
Bruce Lee

for C++

programmers

Marco Arena

Research your own experience.

Absorb what is useful.

Reject what is useless.

Add what is specifically your own.

Marlowe – 1969

The best fighter can adapt on any style

The best fighter is not a boxer, karate or judo man.

The best fighter is someone who can adapt on any

style.

There should only be tools to use as effectively as

possible. The highest art is no art. The best form is

no-form.

The best fighter can adapt on any style

C++ cannot be expressed as a single style.

C++ supports many alternative paradigms and tools.

In C++ we do mix by design.

The best fighter can adapt on any style

void rotate_and_draw(vector<Shape*>& vs, int r)
{

 for_each(vs.begin(), vs.end(), [](Shape* p) {
 p->rotate(r);
 });

 for (Shape* p : vs)
 p->draw();
 }

Object-Oriented

Generic Functional
(sort of)

Procedural

The best fighter can adapt on any style

Mixing styles and idioms is by design

Example from C++20 – ranges

auto up = accumulate(zip_with(greater<>{}, tail(low), close), 0);

auto down = accumulate(zip_with(less<>{}, tail(high), close), 0);

cout << up << " " << down;

up=sum(map(lambda (a,b): a>b, zip(low[1:], close)))

down=sum(map(lambda (a,b): a<b, zip(high[1:], close)))

print("%d %d" % (up, down))

Wait!
That’s Python

The best fighter can adapt on any style

I tried to implement the STL in other languages and

failed.

C++ was the only language in which I could do it.

Alexander Stephanov

The best fighter can adapt on any style

The way of the Dragon – 1972

The best fighter can adapt on any style

https://youtu.be/YsHKE4LR77Y?t=193

https://youtu.be/YsHKE4LR77Y?t=193
https://youtu.be/YsHKE4LR77Y?t=193

The best fighter can adapt on any style

Adapting to new and unique scenarios

Suppose we decide not to use new C++ features.

What if our company will do?

What if we change team or boss?

What if we want to change job?

The best fighter can adapt on any style

Adapting to C++ evolution

Know about new feature / give a try / study

Be ready to use them

Know how to learn them in deep

Evaluate if they can give you some value

The best fighter can adapt on any style

Adapting to C++ evolution – Vigilant Approach

struct Aggregate

{

 Aggregate() = delete;

};

Aggregate a{}; // Ok in C+17 :O

The best fighter can adapt on any style

Adapting to C++ evolution – Vigilant Approach

struct Aggregate

{

 Aggregate() = delete;

};

Aggregate a{}; // won’t compile in C++20

The best fighter can adapt on any style

Adapting to C++ evolution – Vigilant Approach

void MightThrow() throw()

{

 // ...

}

The best fighter can adapt on any style

Adapting to C++ evolution – Vigilant Approach

void MightThrow() throw()

{

 // ...

}

// won’t compile in C++20

The best fighter can adapt on any style

Adapting to C++ evolution – Vigilant Approach

Guidelines might not work forever

Examples:

Do not use STL algorithms, they are hard to customize

Use auto_ptr to handle dynamic allocations

The best fighter can adapt on any style

Guidelines might not work forever

Examples:

Do not use STL algorithms, they are hard to customize

Use auto_ptr to handle dynamic allocations

Consider unique_ptr instead of auto_ptr

Consider lambdas to generate in-place callable objects

The best fighter can adapt on any style

Empty your cup

Empty your cup

The way of the Dragon – 1972

Empty your cup

ITA: https://youtu.be/E59E0koivmY?t=24

ENG: https://youtu.be/Hsqw9r8aqo0?t=1388

https://youtu.be/E59E0koivmY?t=24
https://youtu.be/E59E0koivmY?t=24
https://youtu.be/E59E0koivmY?t=24
https://youtu.be/Hsqw9r8aqo0?t=1388
https://youtu.be/Hsqw9r8aqo0?t=1388

In C++, we are constantly exposed to alternatives,

options, trade-offs.

We are even exposed to new things and changes,

when a new standard is officialized.

We should see them as opportunities, with opennes.

Empty your cup

How many ways we can handle errors in C++?

- Exceptions

- Error codes/flags

- Observers/callbacks

- Globals

- …

Empty your cup

Example – Error handling

std::optional<int> try_parse_int(const std::string& s)

{

 //try to parse an int from the given string,

 //and return "nothing" if you fail

}

// optional arguments

std::vector<std::pair<std::string, double>> search(

 std::string query,

 std::optional<int> max_count,

 std::optional<double> min_match_score);

Empty your cup

C++17: std::optional

auto maybeInt = try_parse_int("10");

cout << *maybeInt; // 10

if (auto notInt = try_parse_int("abc"); maybeInt) {

 // ...

}

else

{

 // ...

}

Empty your cup

C++17: std::optional

auto Process(const string& input) {

auto opt1 = Func1(input);

if (opt1) {

 auto opt2 = Func2(*opt2);

 if (opt2) {

 return Func3(*opt2);

 }

}

return std::nullopt;

}

Boilerplate…

Empty your cup

C++17: std::optional

auto Process(const string& input) {

return Func1(input) ||

 Func2 ||

 Func3;

}

template<typename T, typename F>
auto operator||(std::optional<T> opt, F f)
{
 return opt ? f(opt.value()) : std::nullopt;
}

Empty your cup

Composition with std::optional

optional<UrlInfo> ClickShortUrl(const string& url)

{

 return GetShortUrl(url)

 || IfNotExpired

 || IfNotPrivate

 || Click;

}

Who failed?

Empty your cup

Composition with std::optional

Second try: expected

expected<UrlInfo, ErrorType> ClickShortUrl(const string& url)

{

 return GetShortUrl(url)

 || IfNotExpired

 || IfNotPrivate

 || Click;

}

template<typename T, typename F>

auto operator||(expected<T, ErrorType> ex, F f)

{

 return ex ? f(ex.value()) : ex.error();

}

Empty your cup

Other possible problems:

- return values can be ignored (exceptions cannot)

- composition is by hand

- every function is explicitly polluted with ADTs

Empty your cup

Again, let’s empty our cup:

 What other languages do?

Empty your cup

Conversations with other masters

Empty your cup

C++ Master: How do you encapsulate errors?

Swift Master: We use exceptions.

C++ Master: Are you happy with them?

Swift Master: Well, let me show you some code…

Empty your cup

Swift

func mightThrow() throws -> String

func cannotThrow() -> String

// call

result = try mightThrow();

result2 = cannotThrow();

Empty your cup

Swift

C++ Master: How do you encapsulate errors?

Rust Master: We use something like expected.

C++ Master: what about the boilerplate?

Rust Master: Well, let me show you some code…

Empty your cup

Rust

result = foo();

if (!result)

 return result.error();

// result.value()

result = foo()?; // early return or continue

result2 = foo2()?; // early return or continue

Empty your cup

Rust

Empty your cup

A near future?

A near future?

Empty your cup

Hack away the unessential

It is not daily increase but daily decrease, hack away

the unessential.

True refinement seeks simplicity.

Hack away the unessential

{ // automatic lifetime

 Foo foo; // constructor

 // ... exceptions possible ...

} // foo destructed and deallocated here

// dynamic lifetime

int* arr = new int[10]{}; // dynamic buffer

// in case of exceptions... :(

delete [] arr;

Hack away the unessential

C++ Lifetime Patterns

// Example of classical RAII wrapper

struct Handler
{
 Handler(resource* res) : m_res(res){}

 ~Handler() { delete m_res; }

 void Use()
 {
 // use m_res...
 }

private:
 resource* m_res;
};

Hack away the unessential

C++ Lifetime Patterns

Classes that have custom destructors, copy/move constructors

or copy/move assignment operators should deal exclusively

with ownership. Other classes should not have custom

destructors, copy/move constructors or copy/move assignment

operators.

(application of the Single Responsibility Principle)

Hack away the unessential

Rule of Zero – Example

struct ResourceWrapper
{
 Handler(std::unique_ptr<resource> res) : m_res(std::move(res)){}

 void Use()
 {
 // use m_res...
 }

private:
 std::unique_ptr<resource> m_res;
};

Hack away the unessential

Rule of Zero – Example

Rule of Zero – Some tools

- smart pointers – general-purpose resource managers

- containers – data structures

- scope guards – anonymous destructors

- your own wrapper

Hack away the unessential

void Func(Foo* p);

// Is p an owner?

// can be p be null?

// p is one or more instances?

// ...

One syntax,

several semantics

Hack away the unessential

Pointers headache

void Func(unique_ptr<Foo> p);

void Func(another_ptr<Foo> p);

void Func(owner<Foo> p); *

// Owners

(*) template<typename T>

 using owner = T*;

Hack away the unessential

Pointers headache – Alternatives

void Func(Foo& p);

void Func(reference_wrapper<Foo> p);

void Func(not_null<Foo> p);

// Non-nullable references

Hack away the unessential

Pointers headache – Alternatives

void Func(std::span<Foo> seq);

void Func(Foo* seq, int len);

void Func(Foo* seq, size_t len);

void Func(const array<Foo, len>& seq);

void Func(const vector<Foo>& seq);

// Sequences

Hack away the unessential

Pointers headache – Alternatives

Pointers headache – Alternatives

void Func(Foo* nullableReference);

// nullable-references

Hack away the unessential

A recent example from a famous C++ blog:

Implementing Default Parameters That Depend on

Other Parameters in C++

Hack away the unessential

Unpractical complexity

void f(double x, double y, DefaultedF<double, GetDefaultAmount> z)
{

}

template<typename T, typename GetDefaultValue>
class DefaultedF
{
public:
 DefaultedF(T const& t) : value_(t){}
 DefaultedF(DefaultValue) : value_(std::nullopt) {}

// ...

private:
 std::optional<T> value_;
};

template<typename... Args>
T get_or_default(Args&&... args)
{
 if (value_)
 {
 return *value_;
 }
 else
 {
 return GetDefaultValue::get(std::forward<Args>(args)...);
 }
}

Hack away the unessential

Unpractical complexity

void f(double x, double y, double z)

{

 //...

}

void f(double x, double y)

{

 f(x, y, x+y);

}

Hack away the unessential

Unpractical complexity

Adding Enables Removing – Kate Gregory

New standard = opportunities to ditch custom code

Requires a vigilant and responsible approach

Hack away the unessential

Adding Enables Removing – Example C++98

std::vector<Customer> c = ...;

struct NameAndSurnameMatcher
{
 NameAndSurnameMatcher(const string& name, const string& surname)
 : m_name(name), m_surname(surname) { }

 bool operator()(const Customer& c) const {
 return c.Name == m_name && c.Surname == m_surname;
 }
private:
 string m_name, m_surname;
};

std::vector<Customer>::iterator it = std::find_if(c.begin(), c.end(),

NameAndSurnameMatcher(name, surname));

Hack away the unessential

Adding Enables Removing – Example C++11

std::vector<Customer> c = ...;

struct NameAndSurnameMatcher
{
 NameAndSurnameMatcher(const string& name, const string& surname)
 : m_name(name), m_surname(surname) { }

 bool operator()(const Customer& c) const {
 return c.Name == m_name && c.Surname == m_surname;
 }
private:
 string m_name, m_surname;
};

auto it = std::find_if(c.begin(), c.end(),
 [&](const Customer& c) {
 return c.Name == name && c.Surname == surname;
 });

Hack away the unessential

At Google, we do not use exceptions

https://google.github.io/styleguide/cppguide.html#Exceptions

[…]

Given that Google's existing code is not exception-tolerant, the costs of

using exceptions are somewhat greater than the costs in a new project.

[…]

Hack away the unessential

https://google.github.io/styleguide/cppguide.html#Exceptions

Examples of what we can hack away:

- responsibility from classes

- utility code from business code

- multiple semantics from types

- custom code in favour of standard code

- generalizations/complexity when not strictly needed

- features, if they do not contribute expressing your own C++

- …many more…

Hack away the unessential

A punch is just a punch

Before I studied the art, a punch was just a punch, a

kick was just a kick. After I learned the art, a punch

was no longer a punch, a kick was no longer a kick.

Now that I’ve understood the art, a punch is just a

punch, a kick is just a kick.

The three stages of cultivation

A punch is just a punch

Pupil: Master, what is a string?

Master: Just a sequence of characters.

Pupil: And what about const char*, std::string,

 CString, QString, System::String?

Master: What is a string, after all?

A punch is just a punch

A string is just a sequence of characters.

A punch is just a punch

C++17: std::string_view

Internally, it’s just like:

 const char* buffer; // immutable

 size_t length;

Copying is just as cheap as copying two 64bit ints

(on 64bit applications).

A punch is just a punch

C++17: std::string_view

H e l l o

buffer

A punch is just a punch

std::string_view – Example

sv.remove_prefix(min(sv.find_first_not_of(" "), sv.size()));

H e l l o

buffer

A punch is just a punch

std::string_view – Example

sv.remove_prefix(min(sv.find_first_not_of(" "), sv.size()));

H e l l o

buffer

A punch is just a punch

std::string_view – Example

sv.remove_prefix(min(sv.find_first_not_of(" "), sv.size()));

buffer

A punch is just a punch

std::string_view – Example

sv.remove_prefix(min(sv.find_first_not_of(" "), sv.size()));

A punch is just a punch

std::string_view – Example

string_view trim_left(string_view str)

{

 sv.remove_prefix(

 std::min(sv.find_first_not_of(" "), sv.size()));

}

A punch is just a punch

std::string_view – Example

void businessCode(const char* str);

void businessCode(const string& str);

void businessCode(const QString& str);

void businessCode(const CString& str);

//...

void businessCode(std::string_view str);

A punch is just a punch

std::string_view – One type to rule them all

std::string_view – One type to rule them all

string_view sv = cStr; // const char* (null-terminated)

string_view sv {cStr, len}; // const char* (general)

string_view sv = stdStr; // std::string

string_view sv = qStr.toLocal8Bit().constData(); // QString

string_view sv = atlCString.GetString(); // CString

A punch is just a punch

std::string_view – Warning!

void businessCode(std::string_view str)

{

 // are you sure BusinessImpl does not expect \0 at the end?

 ExternalLibrary::BusinessImpl(str.data());

}

Adding string_view into an existing codebase is not always the right answer: changing parameters to pass
by string_view can be inefficient if those are then passed to a function requiring a string or a NUL-
terminated const char*. It is best to adopt string_view starting at the utility code and working upward, or
with complete consistency when starting a new project.

https://abseil.io/tips/1

A punch is just a punch

https://abseil.io/tips/1

A punch is just a punch

Some scenarios string_view does not fit in:

- need to guarantee the sequence is null-terminated

- need to modify the sequence

- need to handle the memory of the sequence

A punch is just a punch

C++20: std::span

 void Func(std::span<Foo> seq);

A punch is just a punch

It’s basically "high level systems programming"

A punch is just a punch

Other examples of a punch is just a punch in C++:

- iterators

A punch is just a punch

A punch is just a punch

Other examples of a punch is just a punch in C++:

- iterators

- ranges

A punch is just a punch

Other examples of a punch is just a punch in C++:

- iterators

- ranges

- tuples

A punch is just a punch

std::tuple as "structured data lingua franca"

struct Foo

{

 std::string m_name;

 int m_age;

};

struct Bar

{

 std::string m_name;

 int m_age;

};

std::tuple<string, int>

A punch is just a punch

Research your own experience

Research your own experience.

Absorb what is useful.

Reject what is useless.

Add what is specifically your own.

Vigilant Approach

Adaptability

Responsibility

Openness

Research your own experience

Research your own experience

• In C++, one size does not fit all – by design

• Mixing styles and idioms is normal

• You create your own C++

• You may create your own guidelines

Research your own experience

Absorb what is useful

• Don’t reinvent the wheel

• We have very good and mature idioms

• Use the standard as much as possible

• Consider the Ecosystem

Research your own experience

Reject what is useless

• Using every standard feature is optional!

• Ban features, if needed

• C++ is very complex. Keep it as simple as possible

Research your own experience

Add what is specifically your own

• You will have unique needs

• Exploit the C++ flexibility, when needed

Research your own experience

Be flexible, responsible and open

• What works now might not work forever

• Guidelines should evolve

• Consider new things as opportunities – be vigilant!

Research your own experience

Enter the Dragon – 1973

Thank you!

References

Bruce Lee tickled your curiosity?

• Artist of Life – edited by John Little

• Striking Thoughts – edited by John Little

• The Warrior Within – written by John Little

• Bruce Lee Podcast at brucelee.com/podcast-blog

