-~
2\l

Bruce Lee
for C++ ‘ .

programmers

Marco Arena

The best fighter is not a Boxer, Karate
or Judo man. The best fighter is someone who

can adapt on any style.

Bruce Lee

Secret #4: It’s independent of the paradigm

Italian C++ Community - Pordenone, Feb 7th 2015

Research your own experience.
Absorb what is useful.
Reject what is useless.

Add what is specifically your own.

N
O
N
™~
|
QO
S
QS
~S
~
=

The best fighter can adapt on any style

The best fighter can adapt on any style

The best fighter is not a boxer, karate or judo man.
The best fighter is someone who can adapt on any

style.

There should only be tools to use as effectively as
possible. The highest art is no art. The best form is

no-form.

The best fighter can adapt on any style

C++ cannot be expressed as a single style.

C++ supports many alternative paradigms and tools.

In C++ we do mix by design.

The best fighter can adapt on any style

Mixing styles and idioms is by design

void rotate_and draw(vector<Shape*>& vs, int r)

{

for each(vs.begin(), vs.end(), [](Shape* p) { Functional
p->rotate(r); (sort of ©)
})s

for (Shape* p : vs)
p->draw();
}

The best fighter can adapt on any style

Example from C++20 - ranges

auto up = accumulate(zip_with(greater<>{}, tail(low), close), 0);
auto down = accumulate(zip with(less<>{}, tail(high), close), 0);

cout << up <« << down;

up=sum(map(lambda (a,b): a>b, zip(low[1l:], close))) Wa|t'

down=sum(map(lambda (a,b): a<b, zip(high[1:], close))) That,S Python @
print("%d %d" % (up, down))

The best fighter can adapt on any style

I tried to implement the STL in other languages and
failed.

C++ was the only language in which I could do it.

Alexander Stephanov

The best fighter can adapt on any style

The way of the Dragon — 1972
https://youtu.be/YsHKE4LR77Y?t=193

https://youtu.be/YsHKE4LR77Y?t=193
https://youtu.be/YsHKE4LR77Y?t=193

The best fighter can adapt on any style

Adapting to new and unique scenarios

. LI . . . g
‘§:: w K . 4 - g .
” S : ‘~| . L7 - ?i. ! 3 4 ‘; s . S fi :
LU0 | REC | IS (] - S (Rl | S | =
=, . N " 2 o 4 %7
ni e 3 o wii
R R T e ! Bl - =’ e T s
bl bt

e | .y M [AY PR AR | (TP I, | YRS i [] cunn -
weE, ami : A :
- v R H Sl = "

[l . (]

The best fighter can adapt on any style

Adapting to C++ evolution

Suppose we decide not to use new C++ features.

What if our company will do?

What if we change team or boss?

What if we want to change job?

The best fighter can adapt on any style

Adapting to C++ evolution — Vigilant Approach

Know about new feature / give a try / study
Be ready to use them
Know how to learn them in deep

Evaluate if they can give you some value

The best fighter can adapt on any style

Adapting to C++ evolution — Vigilant Approach

struct Aggregate

{
Aggregate() = delete;
}s5

Aggregate a{}; // ok in c+17 :0

The best fighter can adapt on any style

Adapting to C++ evolution — Vigilant Approach

struct Aggregate

{
Aggregate() = delete;
}s5

Aggregate a{}; // won’t compile in C++20

The best fighter can adapt on any style

Adapting to C++ evolution — Vigilant Approach

void MightThrow() throw()

{
I o

The best fighter can adapt on any style

Adapting to C++ evolution — Vigilant Approach

void MightThrow() throw()

{ // won’t compile in C++20
/] ...

The best fighter can adapt on any style

Guidelines might not work forever

Examples:

Do not use STL algorithms, they are hard to customize

Use auto_ptr to handle dynamic allocations

The best fighter can adapt on any style

Guidelines might not work forever

Examples:

N STL eleorithms—t] b il .
Consider lambdas to generate in-place callable objects

. handied < o Tlocats

Consider unique_ptr instead of auto_ptr

Empty your cup

Empty your cup

Empty your cup

Salvatore G;

The way of the Dragon — 1972

ITA:
ENG:

https://youtu.be/E59E0koivmY?t=24
https://youtu.be/E59E0koivmY?t=24
https://youtu.be/E59E0koivmY?t=24
https://youtu.be/Hsqw9r8aqo0?t=1388
https://youtu.be/Hsqw9r8aqo0?t=1388

Empty your cup

In C++, we are constantly exposed to alternatives,

options, trade-offs.

We are even exposed to new things and changes,

when a new standard 1s officialized.

We should see them as opportunities, with opennes.

Empty your cup

Example — Error handling

How many ways we can handle errors in C++?

- Exceptions
- Error codes/flags

- Observers/callbacks

- Globals

Empty your cup

C++17: std: :optional

std: :optional<int> try parse_int(const std::string& s)
{
//try to parse an int from the given string,

//and return "nothing" if you fail

// optional arguments

std::vector<std: :pair<std::string, double>> search(
std::string query,
std: :optional<int> max_count,

std: :optional<double> min_match_score);

Empty your cup

C++17: std: :optional

auto maybeInt = try parse int("10");
cout << *maybeInt; // 10

if (auto notInt = try parse int("abc"); maybelInt) {

7 oo
}
else
{

/] ...

Empty your cup

C++17: std: :optional

auto Process(const string& input) {
auto optl = Funcl(input);
if (optl) {
auto opt2 = Func2(*opt2);
if (opt2) {
return Func3(*opt2);
}
}

return std::nullopt;

Boilerplate...

Empty your cup

Composition with std: :optional

auto Process(const string& input) {
return Funcl(input) ||
Func2 ||
Func3;

template<typename T, typename F>

auto operator||(std::optional<T> opt, F f)
{

return opt ? f(opt.value()) : std::nullopt;
}

Empty your cup

Composition with std: :optional

optional<UrlInfo> ClickShortUrl(const string& url)
{
return GetShortUrl(url)
|| IfNotExpired
|| IfNotPrivate
|| Click;

Who failed?

Empty your cup

Second try: expected

expected<UrlInfo, ErrorType> ClickShortUrl(const string& url)
{
return GetShortUrl(url)
|| IfNotExpired
|| IfNotPrivate
| | Click;

template<typename T, typename F>

auto operator||(expected<T, ErrorType> ex, F f)

{

return ex ? f(ex.value()) : ex.error();

Empty your cup

Other possible problems:

return values can be ignored (exceptions cannot)
composition 1s by hand

every function is explicitly polluted with ADTs

Empty your cup

Again, let’s empty our cup:

What other languages do?

Empty your cup

Conversations with other masters

Empty your cup

Swift

C++ Master: How do you encapsulate errors?

Swift Master: We use exceptions.

C++ Master: Are you happy with them?

Swift Master: Well, let me show you some code...

Empty your cup

Swift

func mightThrow() -> String

func cannotThrow() -> String

result = try mightThrow();

result2 = cannotThrow();

Empty your cup

Rust

C++ Master: How do you encapsulate errors?

Rust Master: We use something like expected.

C++ Master: what about the boilerplate?

Rust Master: Well, let me show you some code...

Empty your cup

Rust

result = foo();
if (!result)
return result.error();

// result.value()

result = foo()?; // early return or continue

result2 = foo2()?; // early return or continue

Empty your cup

A near future?

auto divide(int numerator, int denominator) throws -> double { Meeting C++ 2018
if(denominator == @) . Phil Nash
throw std::arithmetic_errc::divide_by zero; ~—~—_ __ marked + checked by compiler,
else ... Static values Option(al) is not
return (double)numerator/ denominator; o il a failure

try { overhead - happy path 10 4
auto 1 = try to_int("12"); overhead - error path 10
auto d = try divide(42, 1); safety 10
auto result = d=2; i C
std:icout << result << std::endl; ety .

} separate paths 10
catch(std::error err) { reasonability 10

std::cerr << err << std::endl; composability 10

message 10

}

Empty your cup

A near future?

Zero-overhead deterministic exceptions: Throwing values

ment Number: P0O709 RO
y-to: Herb Sutte

PO779R ing operator try()

Divergent error handling has fractured the C++ community into incompaf

(1) C++ projects often ban even turning on compiler support for excepti I\\'lﬂj_ t:]_ (_l native (_ —— 11 ro f],]]](_',‘.ti(_’!llﬁ[.]l

not using Standard C++. Exceptions are required to use central C++ 4
structors) and the C++ standard library. Yet in [SC++F 2018], over ha
tions are banned in part (32%) or all (20%) of their code, which mea
dialect with different idioms (e.g., two-phase construction) and eith
dialect or none at all. We must make it possible for all C++ projects {
support and use the standard language and library.

Language C++

We keep inventing more incompatible error handling mechanisms, i

wedprod.com
should support common proven ones in try/throw/catch so they|

Something which would be us Lxpected p al [P the C++ Monadic Interface
d1l4.github.io/outcome/

ilar way to how Swift ! and Rus implement

rplate when writing code with Expected all

Example in code:

Hack away the unessential

Hack away the unessential

It is not daily increase but daily decrease, hack away

the unessential.

True refinement seeks simplicity.

Hack away the unessential

C++ Lifetime Patterns

{ // automatic lifetime
Foo foo; // constructor
// ... exceptions possible ...

} // foo destructed and deallocated here

// dynamic lifetime
int* arr = new int[10]{}; // dynamic buffer
// in case of exceptions... :(

delete [] arr;

Hack away the unessential

C++ Lifetime Patterns

struct Handler

{
Handler(resource* res) : m_res(res){}
~Handler() { delete m_res; }
void Use()
{
// use m_res...
}
private:

resource* m_res,

}s

Hack away the unessential

Rule of Zero — Example

Classes that have custom destructors, copy/move constructors
or copy/move assignment operators should deal exclusively
with ownership. Other classes should not have custom
destructors, copy/move constructors or copy/move assignment
operators.

(application of the Single Responsibility Principle)

Hack away the unessential

Rule of Zero — Example

struct ResourcelWrapper

{
Handler(std::unique_ptr<resource> res) : m_res(std::move(res)){}
void Use()
{
// use m_res...
}
private:

std::unique_ptr<resource> m_res;

}s

Hack away the unessential

Rule of Zero — Some tools

- smart pointers — general-purpose resource managers
- containers — data structures
- scope guards — anonymous destructors

- YOUr own wrapper

Hack away the unessential

Pointers headache

void Func(Foo* p);

// Is p an owner?
// can be p be null?

// p is one or more instances?

/] ...

One syntax,

several semantics

Hack away the unessential

Pointers headache — Alternatives

void Func(unique_ ptr<Foo> p);
void Func(another ptr<Foo> p);

void Func(owner<Foo> p); *

(*) template<typename T>

using owner = T*;

Hack away the unessential

Pointers headache — Alternatives

void Func(Foo& p);
void Func(reference_wrapper<Foo> p);

void Func(not null<Foo> p);

Hack away the unessential

Pointers headache — Alternatives

void Func(std::span<Foo> seq);

void Func(Foo* seq, int 1len);

void Func(Foo* seq, size t len);

void Func(const array<Foo, len>& seq);

void Func(const vector<Foo>& seq);

Hack away the unessential

Pointers headache — Alternatives

void Func(Foo* nullableReference);

// nullable-references

Hack away the unessential

Unpractical complexity

A recent example from a famous C++ blog:

Implementing Default Parameters That Depend on

Other Parameters in C++

Hack away the unessential

Unpractical complexity

void f(double x, double y, DefaultedF<double, GetDefaultAmount> z)
{

}

template<typename T, typename GetDefaultValue>
class DefaultedF

{
public:
DefaultedF (T const& t) : value (t){}
DefaultedF (DefaultValue) : value (std::nullopt) {}
1l ooo
private:
std::optional<T> value_;
}s
template<typename... Args>
T get_or_default(Args&&... args)
{
if (value)
{
return *value_;
}
else
{
return GetDefaultValue::get(std::forward<Args>(args)...);
}

Hack away the unessential

Unpractical complexity

void f(double x, double y, double z)

{
11 oo

void f(double x, double y)

{
f(x, y, X+y);

Hack away the unessential

Adding Enables Removing — Kate Gregory

New standard = opportunities to ditch custom code

Requires a vigilant and responsible approach

Hack away the unessential

Adding Enables Removing — Example C++98

std: :vector<Customer> c = .

.3

struct NameAndSurnameMatcher

{

NameAndSurnameMatcher(const string& name, const string& surname)
: m_name(name), m_surname(surname) { }

bool operator()(const Customer& c) const {
return c.Name == m_name && c.Surname == m_surname;

}

private:
string m_name, m_surname;

}s

std::vector<Customer>::iterator it = std::find_if(c.begin(), c.end(),

i

Hack away the unessential

Adding Enables Removing — Example C++11

std: :vector<Customer> c = ..

<

struct NameAndSurnameMatcher
{
NameAndSurnameMatcher(const string& name, const string& surname)
: m_name(name), m_surname(surname) { }

bool operator()(const Customer& c) const {
return c.Name == m_name && c.Surname == m_surname;

}

private:
string m_name, m_surname;

};

auto it = std::find_if(c.begin(), c.end(),
[&] (const Customer& c) {
return c.Name == name && c.Surname == surname;

1)

Hack away the unessential

At Google, we do not use exceptions

...]

Given that Google's existing code is not exception-tolerant, the costs of

using exceptions are somewhat greater than the costs in a new project.

[...]

https://google.github.io/styleguide/cppguide.html#Exceptions

Hack away the unessential

Examples of what we can hack away:

- responsibility from classes

- utility code from business code

- multiple semantics from types

- custom code 1n favour of standard code

- generalizations/complexity when not strictly needed

- features, 1f they do not contribute expressing your own C++

- ..many more...

A punch 1s just a punch

A punch is just a punch

Before I studied the art, a punch was just a punch, a
kick was just a kick. After I learned the art, a punch
was no longer a punch, a kick was no longer a kick.

Now that I've understood the art, a punch is just a

punch, a kick is just a kick.

The three stages of cultivation

A punch is just a punch

Pupil: Master, what is a string?

Master: Just a sequence of characters.

Pupil: And what about const char®, std::string,

CString, QString, System::String?

Master: What is a string, after all?

A punch is just a punch

C++17: std::string view

A string is just a sequence of characters.

A punch is just a punch

C++17: std::string view

Internally, it’s just like:

const char* buffer; // immutable

size t Llength;

Copying is just as cheap as copying two 64bit ints

(on 64bit applications).

A punch is just a punch

std: :string view — Example

| (el]o

f buffer

A punch is just a punch

std: :string view — Example

.

| (el]o

f buffer

sv.find first not of(" ")

A punch is just a punch

std: :string view — Example

.
HERIIEIEEEE

f buffer

sv.remove prefix(sv.find _first_not of(" "));

A punch is just a punch

std: :string view — Example

f buffer

SV. (sv.find _first _not of(" "));

.

A punch is just a punch

std: :string view — Example

sv.remove prefix(min(sv.find_first not of(), sv.size()));

A punch is just a punch

std: :string view — Example

string view trim_left(string view str)

{

sv.remove prefix(

std::min(sv.find_first _not_of(" "), sv.size()));

A punch is just a punch

std: :string view — One type to rule them all

void businessCode(const char* str);
void businessCode(const string& str);
void businessCode(const QString& str);

void businessCode(const CString& str);

[l o

void businessCode(std::string view str);

A punch is just a punch

std: :string view — One type to rule them all

string view sv = cStr; // const char* (null-terminated)

string view sv {cStr, len}; // const char* (general)

string view sv = stdStr; // std::string

string view sv = gStr.tolLocal8Bit().constData(); // QString

string view sv = atlCString.GetString(); // CString

A punch is just a punch

std::string view — Warning!

void businessCode(std::string view str)

{

// are you sure BusinessImpl does not expect \0 at the

ExternallLibrary: :BusinessImpl(str.data());

Adding string_view into an existing codebase is not always the right answer: changing parameters to pass
by string_view can be inefficient if those are then passed to a function requiring a string or a NUL-
terminated const char*. It is best to adopt string_view starting at the utility code and working upward, or
with complete consistency when starting a new project.

end?

https://abseil.io/tips/1

A punch is just a punch

A punch is just a punch

Some scenarios string view does not fit in:

- need to guarantee the sequence 1s null-terminated
- need to modify the sequence

- need to handle the memory of the sequence

A punch is just a punch

C++20: std: :span

void Func(std::span<Foo> seq);

A punch is just a punch

It’s basically "high level systems programming"

How to use Span<T> and Memory<T>

9 Antdo Almada | Follow |

(Updated to .NET Core 2.1 official release version)

A punch is just a punch

Other examples of a punch is just a punch in C++:

- 1terators

A punch is just a punch

A punch is just a punch

Other examples of a punch is just a punch in C++:

- 1terators

- ranges

A punch is just a punch

Other examples of a punch is just a punch in C++:

- 1terators
- ranges

- tuples

A punch is just a punch

std: :tuple as "structured data lingua franca"

struct Foo struct Bar

{ {
std::string m_name; std::string m_name;
int m_age; int m_age;

}s }s

std: :tuple<string, int>

Research your own experience

Research your own experience

Research your own experience.

Absorb what is useful. Vigilant Approach
Adaptability
. : Responsibility
Reject what is useless.
Openness

Add what 1s specifically your own.

Research your own experience

Research your own experience

In C++, one size does not fit all — by design

Mixing styles and 1dioms 1s normal
* You create your own C++

* You may create your own guidelines

Research your own experience

Absorb what is useful

Don’t reinvent the wheel

We have very good and mature 1dioms

Use the standard as much as possible

Consider the Ecosystem

Research your own experience

Reject what is useless

* Using every standard feature i1s optional!

 Ban features, i1f needed

« (C++ 1s very complex. Keep it as simple as possible

Research your own experience

Add what 1s specifically your own

* You will have unique needs

* Exploit the C++ flexibility, when needed

Research your own experience

Be flexible, responsible and open

 What works now might not work forever
e Guidelines should evolve

* (Consider new things as opportunities — be vigilant!

Enter the Dragon — 1973

Thank you!

References

Bruce Lee tickled your curiosity?

o Artist of Life — edited by John Little
o Striking Thoughts — edited by John Little
o The Warrior Within — written by John Little

 Bruce Lee Podcast at brucelee.com/podcast-blog

