©
-
o
S
O
O
e
©
=

NOT IN THIS SESSION

= Full dissertation on ranges’ internals
= Customization: how to build your own views and actions
= Meticulous compliancy with C++20 (I will use range-v3)

= Performance evidences and tests

IN THIS

SESSION

= A gentle introduction to ranges
= Fundamental principles, patterns and tips

= Examples and game-based practice (shirts up for grabs!)

KNOWING IS NOT ENOUGH, WE MUST APPLY

25% discount:
ITALIANCPP25

https://www.italiancpp.org/ranges

A GENTLE INTRODUCTION T0 RANGES

A long time ago Iin a galaxy far,
far away....

THE C++ TRIAD

N N

u H Iterators

Algorithms

THE C++ TRIAD

N N

u H Iterators
m Algorithms

LIMITATIONS OF THE C++ TRIRD

#1 Verbosity / Iterators mismatch errors

Every algorithm needs both begin and end explicitly.
vector v = {...}; vector k = {...};
sort(begin(v), end(v)); // I am too lazy for this

sort(begin(v), end(k)); // ooops

sort(v); // why not just this?

LIMITATIONS OF THE C++ TRIRD

#2 Not easily and fluently composable

const vector<user> users = {{1, 10}, {2, 18}, {3, 20}, {4, 17}};
vector<user> filteredUsers;

copy_if(begin(users), end(users), back_inserter(filteredUsers), [](auto const& user) {

return user.age >= 18;

})s

vector<long> ids;

transform(begin(filteredUsers), end(filteredUsers), back inserter(ids), [](auto const& user){

return user.id;

})s

// ids: 2, 3

A BIT OF HISTORY

= 2004: Boost.Range

= 2010: Boost.Range 2.0

= 2013: Eric Niebler’s first commit to range-v3

= 2014: Proposal "Ranges for the Standard Library"
= 2017: Ranges TS

= 2018: Ranges merged to C++20

WHAT I5 A RANGE?

= A range is any type providing begin/end iteration:

std::ranges::'ANge

Defined in header <ranges>

template< class T >

concept range = requires(T& t) {
ranges: :begin(t);
ranges::end (t);

s

YOU ARE USING RANGES ALREADY

for (auto i : rng)

{

... do something with 1...

}

WHAT I5 A RANGE?

= Depending on the capabilities of the underlying iterator, a range might express

additional refinements. For example:

std::ranges::bidirectional _range
Defined in header <ranges=

template<class T=
concept bidirectional_range =
ranges: :forward_range<T> && std::bidirectional_iterator<ranges::iterator_t<T=>>;

The bidirectional_range concept is a refinement of range for which ranges: :begin returns a model of
bidirectional_iterator

= Basically, range concepts go hand in hand with iterator categories

RANGE CONCEPTS

A

Iterator

A

Range

A

A

Input Iterator

A

A

Input Range

A

Forward Iterator

A

A

Forward Range

A

Bidirectional Iterator

A

Random Access Iterator

Bidirectional Range

A

A

A

Contiguous Iterator

Random Access Range

A

A

Contiguous Range

RANGE-BASED OVERLOADS

= Ranges provide new overloads that mirror traditional STL algorithms

= These are constrained with Concepts and accept both range arguments, and

also iterator-sentinel pair arguments (and also projections).

vector v = {25, 8, 5, 9, 1};

sort(v);

auto where = lower bound(users, "mar", less<>{}, &user::name);

WHAT??
MY COUSIN SHOWED ME GORGEOUS PIPELINES!

o't

) , “ - s LR "A
LTI >)} .m”"

M L 1SN

- ’l" “ ‘”.‘:’ , A N a : l' : [Y X . N ") \ 2 o — AR Ll 1)
b 8 '3‘ g ah AR {3 PN e SRRt AF T ‘ z M‘ m :"'

1‘--"’\ """‘ '\" l"v- r-"

.
'.‘

l-

MENT A RANGE

DIFFERENT WAYS TO IMPLE]

The "old" iterator-pair design has been relaxed to allow

ranges: :end(t) to have a different type than ranges: :begin(t).
This allows to capture other design models, like:

= [terator + count

= [terator + predicate

The end iterator is now commonly named sentinel.

R RANGE IS ANY "ITERABLE" TYPE

= Ranges can be adapted to behave differently by other range types

= For example, a string could be adapted by a special filter range that return only

upper chars when we iterate on it:

std::string s = "abcReAghNGnoEp";
auto filtered = filter(s, [](auto c) { return isupper(c); });
std::cout << filtered; // RANGE

= Lots of these special range types are provided by the library

IT’S A VIEW!

vector v = {1,2,3,4};

// reminder: filter = keep

auto view = views::filter(v, []J(Cauto i) { return i%2 == 0; })

| views::transform([](Cauto i) { return std::to_string(i); 1});

// consumes all the data

cout << view; // aka: for (auto s : view) { cout << ... }

WHAT IS A VIEW?

= A view is like an expression ready to be evaluated

= It does nothing until we iterate on it

= Anytime we "pull" one element from it, the evaluation happens just for that element

auto view = views::filter(v, [](auto i) { return i%2 == 0; })

| views::transform([](Cauto 1) { return std::to_string(i); 1});

*begin(view) > *begin(transform(filter(v)))

WHAT S A VIEW?

= A range that can be created/copied/moved/assigned in constant time

= Never owns nor modifies data, just describes the intended operation

= Lazily evaluated (generates its elements on demand, when it gets iterated)
= Fluently composable in a pipeline

= To create views, the library provides:
= Adaptors: from existing ranges - e.g. views: :cycle(rng)

= Factories: from something else — e.g.views: :iota(0)

WHAT I5 AN ACTION?

= Comes into play when we need to mutate data
= Works on materialized ranges only (ultimately referring to some data)

= Still compose (eagerly process data in-place and then pass on to the next step)

std::vector<int> v = {10, 2, 10, 3, 2, 1, 1, 21, 5};
v = std::move(v) | actions::sort | actions::unique;
// or, in-place

v |= actions::sort | actions::unique;

// equivalent to

actions::unique(actions::sort(v));

WHAT I5 AN ACTION?

WHAT I5 AN ACTION?

WHAT I5 AN ACTION?

WHAT IS AN ACTION?
f

\

WHAT I5 AN ACTION?

actions: :sort

M-UP PRINCIPLES

Let’s understand the foundations

#1 UNDERSTANDING THE FLOW

= Views are evaluated on demand, one element at a time

= B

> 1

#1 UNDERSTANDING THE FLOW

= Views are evaluated on demand, one element at a time

= B

) 2

#1 UNDERSTANDING THE FLOW

= Views are evaluated on demand, one element at a time

= B

= 3

#1 UNDERSTANDING THE FLOW

= Views are evaluated on demand, one element at a time

= B

) 4

#1 UNDERSTANDING THE FLOW

= Views are evaluated on demand, one element at a time

=

> 1

#1 UNDERSTANDING THE FLOW

= Views are evaluated on demand, one element at a time

=

= 3

#1 UNDERSTANDING THE FLOW

= Be aware of the output cardinality of each view

ﬁm

= B

#1 UNDERSTANDING THE FLOW

= Be aware of the output cardinality of each view

-5

= 2

#1 UNDERSTANDING THE FLOW

std::vector input = {1, 2, 3, 4};
auto lengths = input // [1, 2, 3, 4]
| views::chunk(2) // [[1, 2], [3, 4]]

| views::transform([](auto sub) { return distance(sub); }); // [2, 2]

std::cout << lengths; // [2, 2]

#1 UNDERSTANDING THE FLOW

std::vector input = {1, 2, 3, 4};
auto lengths = input // [1, 2, 3, 4]
| views::chunk(2) // [[1, 2], [3, 4]]

| views::transform([](auto sub) { return distance(sub); }); // [2, 2]

std::cout << front(lengths); // 2

std::cout << *begin(lengths); // useful when...?

#1 UNDERSTANDING THE FLOW

std::vector<std::vector<int>> matrix = { {1,2,3}, {4,5,6} };

auto flatten = matrix | views::join;

std::cout << front(flatten); // 1

std::cout << flatten; // [1, 2, 3, 4, 5, 6]

#1 UNDERSTANDING THE FLOW

Go to www.menti.com and use the code 3096 7444

https://www.menti.com/72716ntt16

#1 UNDERSTANDING THE FLOW

std::vector<std::vector<int>> matrix = { {1,2,3}, {4,5,6} };

auto flatten = matrix | views::join | views::chunk(2);

std::cout << front(flatten); // °?

#1 UNDERSTANDING THE FLOW

std::vector<std::vector<int>> matrix = { {1,2,3}, {4,5,6} };

auto flatten = matrix | views::join | views::chunk(2);

std::cout << front(flatten); // [1, 2]

std::cout << flatten; // [[1, 2], [3, 4], [5, 6]]

#2 YOU ARE USING RANGES ALREADY

= Impersonate a range-based for loop to visualize your pipelines

auto rng = v | views::A | views::B | views::C;

for (auto i : v) {

...1th = views::C(views::B(views::A(1)))

#2 YOU ARE USING RANGES ALREADY

= Eventually, break down the pipeline into intermediate views

auto viewl = v | views::A;

std::cout << viewl << "\n";

auto view2 = viewl | views::B;

#3 BEWARE OF RANGE CONCEPTS

= Be aware of views requirements and productions

std::string s = "split this one";

s | views::split(' ") | views::reverse; // no way!

#3 BEWARE OF RANGE CONCEPTS

Range

InputRange

ForwardRange views::split *)

BidirectionalRange views::reverse

RandomAccessRange

Adjusted from Stepanov & Rose From Mathematics To Generic Programming
Design by Walletfox.com *) at most a ForwardRange

Courtesy of Walletfox

https://www.walletfox.com/course/ranges_views_reverse_bidirectional_concept.php

#3 BEWARE OF RANGE CONCEPTS

auto viewl =

auto view2 =

auto view3 =

std::cout <«

views::iota(1); // [1, 2, 3, 4, 5, ...]
viewl | views::chunk(4); // [[1, 2, 3, 4], [5, 6, 7, 8],
view2 | views::take(5) | views::reverse;

front(view3); // ?

Go to www.menti.com and use the code 3096 7444

]

https://www.menti.com/72716ntt16

#3 BEWARE OF RANGE CONCEPTS

auto viewl =

auto view2 =

auto view3 =

std: :cout <«

views::iota(1); // [1, 2, 3, 4, 5, ...]

viewl | views::chunk(4); // [[1, 2, 3, 4], [5, 6, 7, 8], ...]

view2 | views::take(5) // [[1, 2, 3, 4],

o o ,

[17, 18, 19, 20]]

| views::reverse; // returns elements from the back...

// [17, 18, 19, 20],

front(view3); // [17, 18, 19, 20]

[13, 14, 15, 16],

#3 BEWARE OF RANGE CONCEPTS

auto viewl = views::iota(1); // [1, 2, 3, 4, 5, ...]

auto view2 =

auto view3 =

std: :cout <«

viewl | views::chunk(4); // [[1, 2, 3, 4], [5, 6, 7, 8], ...]
view2 | views::take(5) // [[1, 2, 3, 4], ..., [16, 17, 18, 19]]

| views::transform([](auto rng) { return views::reverse(rng); });

front(view3); // [4, 3, 2, 1]

#3 BEWARE OF RANGE CONCEPTS

auto viewl = views::iota(1); // [1, 2, 3, 4, 5, ...]

auto view2 =

auto view3 =

std: :cout <«

viewl | views::chunk(4); // [[1, 2, 3, 4], [5, 6, 7, 8], ...]
view2 | views::take(5) // [[1, 2, 3, 4], ..., [16, 17, 18, 19]]

| views::transform(views::reverse_fn{});

front(view3); // [4, 3, 2, 1]

#4 MIXING VIEWS & ACTIONS

= An action can be applied to some materialized range (ultimately referring to

some data)

vector v = {1, 2, 3, 4, 5};
actions::reverse(views: :take(v, 3));

std::cout << views::all(v); // 3, 2, 1, 4, 5

#5 MIXING VIEWS & ALGORITHMS

= An algorithm requires some range concepts to apply its operation

std::cout << accumulate(views::closed_1ota(l, 3), 0); // 6

sort(views::closed_iota(l, 3)); // ehm...

#6 DEALING WITH TEMPORARIES

= We cannot create views of temporaries
std::vector<T> (T t);

auto rng = src | view::transform(f) | view::join; // nope!
= However...

auto rng = src | views::transform(f) | views::cachel | views::join;

https://stackoverflow.com/questions/36820639/how-do-i-write-a-range-pipeline-that-uses-temporary-containers

UP PATTERNS

Let’s take the first steps in reusable solutions

#1 GOTTA PRINT ‘EM ALL

= Use views: :all on a container to (lazily) turn it into a range

= The library provides output operator for ranges*

vector v = {1, 2, 3, 4};
std::cout << views::all(v); // [1, 2, 3, 4]

std::cout << (v | views::all); // ditto

#2 MATERIALIZING RANGES TO CONTAINERS

= Use ranges: :to to create a container from a range (consuming it entirely)

auto tens = views::closed_iota(0, 10) | to<std::vector>;

auto letters = views::zip(tens, views::iota('a')) | to<std::map>;

std::cout << letters[0]; // a

std::cout << letters[3]; // d

#3 CHECKING IF ALL ARE EQUAL

= Remember what classical std: :unique does:

it "removes" adjacent equal elements (except the first one)

= Can you imagine what views: :unique does?

std::string letters = "aaaaa'";

const auto areTheSame = distance(views::unique(letters)) == 1;

#3 CHECKING IF ALL ARE EQUAL

= What about early exit?

= Views are not for that! Use an algorithm instead.:

std::string letters = "aaaaa'";

adjacent_find(letters, std::not_equal_to<>{}) == end(letters)

#4 COMBINING RANGES TOGETHER

= Use views::zipandviews::zip with to combine two ranges together

auto letters = views::zip(views::iota(@), views::iota('a')) // [{e, 'a’}, {1,

views: :enumerate(views::iota('a')) // ditto

auto letters
std::vector vectl = {1, 2, 3}, vect2 = {10, 20, 30};

auto sum = views::zip with(std::plus<>{}, vectl, vect2); // [11, 22, 33]

'b'},

.]

#5 GROUPING CONTIGUOUS ELEMENTS TOGETHER

= Use views: :group_by to arrange together contiguous elements which satisfies a predicate

std::string pass = "ciaaaaooopass";
sort(pass); // [a, a, a, a, a, ¢, 1, o, 0o, O, p, S, S|
pass | views::group by(std::equal to<>{}) // [[a,a,a,a,a],[c],[i],[0,0,0],[p],[s,s5]]

| views::transform([](auto rng) { return size(rng); }); // [5, 1, 1, 3, 1, 2]

#6 CRAFTING RANGES

= Use views: :for_each + yield xxxto lazily create ranges through list comprehension

views::iota(1,10) // [1, 2, 3,..., 10]
views: :for each([](int x) {
return yield from(views::repeat n(x, x)); // e.g. i=4: [4,4,4,4]

Y, // [1, 2, 2, 3, 3, 3, 4, 4, 4, 4, ...]

#6 CRAFTING RANGES

= views: :for_each transforms and additionally flattens a range of ranges:

views::for_each = views::transform | views::join

LET’S PLI

Y!

Go to www.menti.com and use the code 3096 7444

https://www.menti.com/72716ntt16

#1 HAVE YOU HIT A FLUSH?

- Can you check if any poker hand is a flush? -

https://wandbox.org/permlink/[6cVmCeSuFxZLpfw

https://wandbox.org/permlink/J6cVmCe5uFxZLpfw

#1 HAVE YOU HIT A FLUSH?

= Remember what classical std: :unique does:

it "removes" adjacent equal elements (except the first one)

= Can you imagine what views: :unique does?

std::string letters = "aaaaa'";

const auto areTheSame = distance(views::unique(letters)) == 1;

- Can you check if any poker hand is a flush? -

https://wandbox.org/permlink/J6cVmCe5uFxZLpfw

Go to www.menti.com and use the code 3096 7444

https://www.menti.com/72716ntt16

#2 WHAT'S BEHIND ADJRCENT _DIFFERENCE?

1520 2124

12\ 15| 20| 211 224

#2 WHAT'S BEHIND ADJRCENT _DIFFERENCE?

= adjacent_difference can be seen as an application of views: :zip with

// we assume the range is non-empty

views::zip with(std::minus<>{}, views::drop(vec, 1), vec);

// strictly speaking, the first element is included as-is

views::concat(views::single(front(vec)),

views::zip with(std::minus<>{}, views::drop(vec, 1), vec));

#2 WHAT'S BEHIND ADJRCENT _DIFFERENCE?

- Can you turn "leader" into "interval'? -

https://wandbox.org/permlink/aW2iA9aSlSe1Br7A

Go to www.menti.com and use the code 3408 8068

https://www.menti.com/1isqpe4ipu

#3 DECODING MESSAGES

auto uniques = input
views::group by([](auto a, auto b) { return isalpha(a) == isalpha(b); })
views::filter([](auto rng) { return isdigit(at(rng, 0)); })

views::transform([](auto rng) { return std::stoi(to<std::string>(rng)); })

to<std: :set>;

https://wandbox.org/permlink/SPAsgYK2Yoarsh4l

#4 REVISITING FIZ2-BUZZ

std:

std:

auto

auto

auto

auto

auto

std:

:array<std::string,3> fizz {"","","Fizz"};

:array<std::string,5> buzz {"","","","","Buzz"};

fizz | views::cycle; // [, ,Fizz, , ,Fizz...]

r_fizzes

r_buzzes buzz | views::cycle; // [, , , ,Buzz, , , , ,Buzz...]
r_fizzbuzz = views::zip with(std::plus{}, r fizzes, r_buzzes); // [, ,Fizz, ,Buzz,Fizz, , ,Fizz,..

r_int_str = views::iota(1) | views::transform([](int x){ return std::to_string(x);}); // [1,2,3...]

rng = views::zip_with([](auto a, auto b){return std::max(a,b);}, r_fizzbuzz, r_int str);

:cout << (rng | views::take(20)) << "\n";

Courtesy of Walletfox

-]

https://www.walletfox.com/publications_ranges.php

KNOWING IS NOT ENOUGH, WE MUST APPLY

25% discount:
ITALIANCPP25

https://www.italiancpp.org/ranges

ADDITIONAL RESOURCES

(book — discount code: ITALIANCPP25)
(article)

(videos)

https://ericniebler.github.io/range-v3/
https://www.walletfox.com/publications_ranges.php
https://www.codeproject.com/Articles/5276756/An-Introduction-to-the-Range-v3-Library
https://www.youtube.com/results?search_query=c%2B%2B+ranges

SOME IDEAS FOR PRACTICING

= Fully Functional C++ with Range-v3 (book — discount code: ITALIANCPP25)

= HackerRank, LeetCode, CodingGame, etc (competitive programming)

= Advent of Code (I have applied ranges on many challenges of 2020 contest)

= Your real-world code (open your mind, think differently)

= If you like, share your challenges/solutions with me (marco@italiancpp.orq),

on our Slack channel #learn, or just tag me on twitter @ilpropheta

https://www.walletfox.com/publications_ranges.php
https://www.hackerrank.com/
https://leetcode.com/
https://www.codingame.com/
https://adventofcode.com/
mailto:marco@italiancpp.org
http://italiancpp.org/slack

BONUS CONTENT

Intrigued? Let me share something more

SZE VS DISTANCE

= ranges: :size calculates the number of elements in a range in constant time (requires a range

capable of doing that)

= ranges: :distance calculates the number of hops needed for iterating over a range (when possible, in

constant time, otherwise it "iterated" the range up to the end)

std::string s = "h20";
std::cout << (distance(s) == size(s)); // 1
std::cout << size(s | views::filter(isalpha)); // does not compile!

std::cout << distance(s | views::filter(isalpha)); // 2

REPEATING TO INFINITY AND BEYOND

= views: :cycle is used to repeat a range to infinity

views::single(1); // [1]
views::cycle(views::single(1)); // [1, 1, 1, ...]
std::vector v = {1, 2, 3};

views::cycle(v); // [1, 2, 3, 1, 2, 3, 1, 2 ...]

views::cycle(views::single(v)); // [v, Vv, VvV, ...]

views::cycle(views::single(views::all(v))); // [[1,2,3], [1,2,3], ...

DIRECTORY CONTENT CYCLING

auto files = subrange(std::filesystem::directory_iterator{"/home"}, std::filesystem::directory_iterator{})
| views::filter([](const auto& de){
return de.is_regular_file() && de.path().extension() == ".txt"; })
| views::transform(&std::filesystem::directory entry::path)

| to<std::vector>;
std::cout << views::all(files) << "\n";
auto cycled = files | views::cycle;
auto it = begin(cycled);

std::cout << *it++ << "\n";
std::cout << *it++ << "\n";
std::cout << *it++ << "\n";
std::cout << *it++ << "\n";
std::cout << *it++ << "\n";

/...

ALL STRING ROTATIONY

= Generate the range of the rotations of a string. E.g. abc 2 [abc], [bca], [cab]

std::string rotateThis = "abc";

const auto len = distance(rotateThis);

auto cycled = rotateThis | views::cycle;

auto rotations = views::iota(0, len) | views::transform([=](auto i) {
return cycled | views::drop(i) | views::take(len);

1)

https://wandbox.org/permlink/giHjuzDyggbKxRqK

SIMPLE CHARS COMPRESSION

= Compress a string like "aaaabbbcca”
to something like [("a", 4), ("b", 3), ("c", 2), ("a", 1)]

std::string input = "aaaabbbcca";

auto output = input | views::group by(std::equal_to<>{}) // [a,a,a,a],[b,b,b],[c,c],[a]

| views::transform([](auto subr) {
return std::make_ pair(front(subr), size(subr));
1)
for (auto [letter, size] : output)

std::cout << letter << "," << size << "\n";

MATRIX ACCESS

std:

auto

auto

auto

auto

auto

std:

std:

std:

:cout << "c2:

:cout << "diagonal:

nr = distance(m), nc

allRows = m | views
c@ = allRows | views
c2 = allRows | views

diagonal = allRows |

ccout << "c@: " << O

<< €2

:vector<std::vector<int>> m = { {1,2,3}, {4,5,6}, {7,8,9} };

= distance(front(m)); // rows=3, cols=3

::join; // [1,2,3,4,5..]
::drop(@) | views::stride(nc); // [1,4,7]
::drop(2) | views::stride(nc); // [3,6,9]

views::stride(nc + 1); // [1,5,9]

<< n\nu;
<< n\nu;

<< diagonal << "\n";

Courtesy of Walletfox

https://www.walletfox.com/publications_ranges.php

3V READING

std::ifstream file("file");
auto lines = getlines(file) | views::for_each([](auto line) {

return yield(line | views::split(',') | to<std::vector<std::string>>);

1)

// lines 1is a lazy range of vector<std::string>
for (auto line : lines | views::take(5)) {

std::cout << views::all(line) << "\n";

https://wandbox.org/permlink/DORWPA6kACegAX9y

REVERSE THE WORDS OF A STRING

= For example: "reverse words in this string' becomes "string this in words reverse"
= A possible approach is to reverse the string blindly and then reverse the individual words

= We have learnt that views: :split | views::reverse does not work. However...

std::string input = "reverse words in this string";
auto rev = views::reverse(input) | views::group by([](auto c1, auto c2) {
return isalpha(cl) == isalpha(c2);

}) | views::for each(views::reverse_fn{});

https://wandbox.org/permlink/QOzBX2TzaWYgIwBi

REVERSE THE WORDS OF A STRING

= Let’s figure out what the code in the previous slide does for the first iteration
= reverse(input) virtually swaps the first 'r' with the last 'g'
= S0, it outputs 'g' to the next combinator that is group_ by
= group_by "accumulates" chars until two non-alpha adjacents are found (e.g.'s' and whitespace)
= when such a pair of letters is found, it produces a subrange including all the "good" ones
= however, due to reverse, remember that letters are accumulated from the back (e.g.[g, n, 1, r, t, s])
= afterwards, for_each takes this subrange and applies reverse_fn (that is just reverse)
= so,[g, n, i, r, t, s]isturnedinto[s, t, r, i, n, g]

= That’s it!

