
Kerberos in Active Directory
Environment

Andrea Artioli, MVTINAPWN
andrea.artioli@unimore.it

Index

1. AD concepts overview
2. Kerberos overview
3. Kerberos basic interaction
4. KDF
5. Basic real word attacks on Kerberos
6. NTLM authentication
7. Delegation attacks

● Unconstrained
● Constrained [Coming soon]
● Resource-Based Constrained [Coming soon]

Disclaimer

● I am NOT a professional PT/Red teamer
○ I just studied this stuff and I think they are interesting, but 0 real experience

● Correct me if I’m wrong!
○ I am here to learn, not to flex

● Ask anything at anytime!
○ I love questions and stupid jokes

AD concepts

● Centralized control of a Windows Network
● Domain Controller (Windows Server)
● LDAP, MSRPC, Kerberos, NTLM
● User, Groups, Machine, Shares management
● Service management (Service Principal Name)

● Authentication protocol
● Centralized

○ AS (Authentication Service)
○ TGS service (Ticket Granting Service, a.k.a. KDC)

● Tickets
○ TGT (Ticket Granting Tickets)
○ TGS (Ticket Granting Service)

● No assertions of: OS, address, physical security

Kerberos Overview

● Based on symmetric cryptography
○ Assumption of shared secret (User/KDC/AS)
○ Attackers cannot bruteforce passwords

● Resilient to adaptive attackers
○ “packets traveling along the network can be read, modified, and inserted at will“

● Stateless
○ AD implementation provides Authentication and Authorization (Privilege Attribute Certificate)
○ Weak post-compromise strategy

Kerberos Overview

KDC + AS (DC) USER SERVICE PRINCIPAL

● user@domain
● Authenticator

Authenticator

AS-REQ
Note:

● May contain a salt for
KDF

● KDC should maintain a
cache within an
acceptable time range
(clock skew)

KDC + AS (DC) USER SERVICE PRINCIPAL

Note:
● TGT cannot be

tampered by user
● Privilege Attribute

Certificate (PAC):
contains user
information

AS-REP

Client-Service
Key

TGT (PAC +
Client-DC Key)

KDC + AS (DC) USER SERVICE PRINCIPAL

TGS-REQ
Note:

● Used for inter-relam
TGT

● Authenticator cache

Authenticator

SPN

TGT(Session
Key + PAC)

KDC + AS (DC) USER SERVICE PRINCIPAL

Client-Service
Key

TGS (PAC +
Client-Service
Key)

Note:
● Identical to AS-REP

but with user-KDC
session key

● TGS cannot last more
than its TGT ->
cascade attack

TGS-REP

KDC + AS (DC) USER SERVICE PRINCIPAL

AP-REQ

Authenticator

TGS (PAC +
Client-Service
Key)

Note:
● TGS != Authentication
● Authenticator cache
● Subkey field in the

authenticator message
● PAC validation?

KDC + AS (DC) USER SERVICE PRINCIPAL

AP-REP

Authenticator

Note:
● Only if mutual auth

required
● CT must be different

Recap

Unencrypted Part:
● Version number of ticket format.
● Service realm
● Service principal

Encrypted Part:
● Ticket flags*
● Session key
● Client realm
● Client principal (username)
● List of Kerberos realms that took part in authenticating the user to whom this ticket was issued.
● Timestamp and other meta data about last initial request.
● Time client was authenticated.
● Validity period start time (optional).
● Validity period end time.
● Ticket Granting Server (TGS) Name/ID
● Timestamp
● Client (workstation) Address
● Lifetime
● Authorization-data

KDF: RC4-HMAC-MD5 (etype 23)

● Cipher key:
○ key_d = MD4(UTF-16LE(password))

● MAC:
○ key_i = hmac_md5(key_d, salt)
○ TAG = hmac_md5(key_i, data)

KDF: AES128/256-CTS-HMAC-SHA1-96 (etype 17/18)

● Cipher key:
○ tkey = random2key(PBKDF2(password, salt, iter_count, keylength))
○ key_d = DK(tkey, "kerberos")

● MAC (form here):
○ key_i = DK(key_d, hex2byte("62dc6e371a63a80958ac562b15404ac5"))
○ TAG = hmac_sha1(key_i, data)

https://github.com/hashcat/hashcat/blob/master/tools/test_modules/m19600.pm#L71C7-L71C17

Real world techniques

● Username enumeration
○ The AS-REQ returns different messages if username exists or not. It can be used to

enumerate possible usernames.
○ From linux:

■ kerbrute userenum
○ From Windows:

■ .\kerbrute.exe userenum
○ Logged with specific Kerberos logs that are not enabled by default (Event ID 4768)

Real world techniques

● Password spraying
○ Try to log-in using a common password over a list of usernames.
○ From linux:

■ kerbrute passwordspray
○ From Windows:

■ .\kerbrute.exe passwordspray
■ .\DomainPasswordSpray.ps1

○ Failed login attempts over a short period are logged by default (Event ID 4625) and, if
kerberos log is activated, pre-authentication failed (Event ID 4771)

Real world techniques

● AS-REP Roasting
○ If no pre-authentication required, then it is possible to brute force the AS-REP given a valid

username and obtain its password. It is possible to do the same if an AS-REP is intercepted.
○ From linux (impacket):

■ GetNPUsers.py [-request]
○ From Windows:

■ .\Rubeus.exe asreproast
○ Cracking:

■ hashcat -m 18200
■ john

○ Logged with Kerberos logs that are not enabled
by default (Event ID 4768 with preauth set to 0)
and honeypot

AS-REP

Session Key

TGT(Session
Key + PAC)

Real world techniques

● Kerberoasting
○ If you have an authenticated account you can request a TGS and crack it just like an AS-REP
○ From linux (impacket):

■ GetUserSPNs.py [-request]
○ From Windows:

■ .\Rubeus.exe kerberoast
○ Cracking:

■ hashcat -m 13100
■ john

○ Logged with Kerberos logs that are not enabled
by default (many Event ID 4769 from the same
user + RC4 tickets) and honeypot

Client-Service
Key

TGS (PAC +
Client-Service
Key)

TGS-REP

Real world techniques

● Golden/Silver tickets
○ If krbtgt account is compromised, you can forge TGT/TGS tickets, obtain keys of any user and

tamper the PAC inside the tickets.
○ From linux (impacket):

■ ticketer.py
○ From Windows:

■ .\mimikatz.exe kerberos::golden
○ Harder to detect: RC4 ticket when AES is the norm, missing fields in tickets, invented

usernames, strange interaction of sensible processes

● MS14-068
○ Implementation flaw patched in november 2014. Allows forged PAC to be accepted: if PAC

dimension was <= 20 bytes, non keyed tag was accepted. Automatic domain takeover from
standard authenticated user.

○ From linux:
■ goldenPac.py (impacket)
■ PyKEK

○ From Windows:
■ PyKEK (requires python3) + mimikatz

Real world techniques

https://www.thehacker.recipes/ad/movement/kerberos/forged-tickets/ms14-068
https://github.com/SecWiki/windows-kernel-exploits/tree/master/MS14-068/pykek

NTLM authentication

● Alternative authentication protocols in AD environment
● Challenge-response protocol
● NTLM authentication protocols (v1, v2)
● DC as trusted third party
● NTHash, LMHash

LMHash (hashcat -m 3000)

1. The user’s password is converted to uppercase.
2. The user's password is encoded in the System OEM code page.
3. This password is NULL-padded to 14 bytes.
4. Password is split into two 7-byte halves.
5. These two values are used to create two DES keys, inserting a parity bit after every seven bits. This

generates the 64 bits needed for a single DES key.
6. Each of the two keys is used to DES-encrypt the constant ASCII string “KGS!@#$%”, resulting in two

8-byte ciphertext values.
7. These two ciphertext values are concatenated to form a 16-byte value, which is the LM hash.

NTHash (hashcat -m 1000)

● MD4(UTF-16LE(password))
● Same as kerberos rc4 key!

NTLM protocol concepts 1

1. Client contacts server sending username@domain
2. Server sends C random server challenge
3. Client solves the challenge and sends back the response
4. Server forwards the response to the DC that verifies it
5. DC replies with the result of the verification

Exchanges

● NTLMv1
○ C = 8-byte server challenge, random
○ K1 | K2 | K3 = LM/NT-hash | 5-bytes-0
○ response = DES(K1,C) | DES(K2,C) | DES(K3,C)

● NTLMv2
○ SC = 8-byte server challenge, random
○ CC = 8-byte client challenge, random
○ CC* = (X, time, CC2, domain name)
○ v2-Hash = HMAC-MD5(NT-Hash, user name, domain name)
○ LMv2 = HMAC-MD5(v2-Hash, SC, CC)
○ NTv2 = HMAC-MD5(v2-Hash, SC, CC*)
○ response = LMv2 | CC | NTv2 | CC*

NTLM protocol concepts 2

● The only information needed to solve the challenge is the NT/LM hash of the
password, NOT THE CLEARTEX PASSWORD ITSELF

○ Pass-the-hash
● Brute Force
● No mutual authentication with the server

○ LLMNR/NBT-NS Poisoning (+ Cracking / + Relay attack)

Unconstrained delegation

● A service that can impersonate every authenticated user with every possible
service in the domain.

● The final service is accessed within the user context, not the service context
○ Better privilege model(?)

● From now on, I “cite” ATTL4S’ slides because I was tired to do them on my
own :)

https://www.youtube.com/@ATTL4S

Unconstrained delegation

Unconstrained delegation abuse (1)

● Who is the attacker in the scenario of an unconstrained delegation?
○ User, by design

● What if the attacker is in control of such a service?
○ Impersonation of every authenticated user

● What if the attacker can force entities to authenticate to the service?
○ Privilege escalation :)
○ RPC printer “bug” :)

Unconstrained delegation abuse (2)

Unconstrained delegation abuse (3)

Unconstrained delegation abuse (4)

Unconstrained delegation abuse (5)

Reference 1

1. https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-kile/b721
9d26-dbc7-4f3a-adfe-dcc31f90d92a (MS reference for used protocols)

2. https://www.rfc-editor.org/rfc/rfc4120 (Kerberos v5)
3. https://www.rfc-editor.org/rfc/rfc4757 (RC4 KDF)
4. https://www.rfc-editor.org/rfc/rfc3962 (AES KDF)
5. https://datatracker.ietf.org/doc/html/rfc3961 (AES KDF DK function)
6. Introduction to AD HTB module
7. Kerberos Attacks HTB module
8. Active Directory Enumeration & Attacks HTB module
9. https://vbscrub.com/2020/02/27/getting-passwords-from-kerberos-pre-authent

ication-packets/ (Sniffed tickets BF)

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-kile/b7219d26-dbc7-4f3a-adfe-dcc31f90d92a
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-kile/b7219d26-dbc7-4f3a-adfe-dcc31f90d92a
https://www.rfc-editor.org/rfc/rfc4120#section-1.4
https://www.rfc-editor.org/rfc/rfc4757
https://www.rfc-editor.org/rfc/rfc3962
https://datatracker.ietf.org/doc/html/rfc3961
https://vbscrub.com/2020/02/27/getting-passwords-from-kerberos-pre-authentication-packets/
https://vbscrub.com/2020/02/27/getting-passwords-from-kerberos-pre-authentication-packets/

Reference 2

10. https://curl.se/rfc/ntlm.html (NTLM documentation)
11. https://learn.microsoft.com/en-us/windows-server/security/kerberos/ntlm-over

view (Official NTLM documentation)
12. https://infosecwriteups.com/ntlm-authentication-in-active-directory-b99ea9087

519 (NTLM in AD)
13. https://www.youtube.com/watch?v=xDFRUYv1-eU (Kerberos unconstrained

delegation)

https://curl.se/rfc/ntlm.html
https://learn.microsoft.com/en-us/windows-server/security/kerberos/ntlm-overview
https://learn.microsoft.com/en-us/windows-server/security/kerberos/ntlm-overview
https://infosecwriteups.com/ntlm-authentication-in-active-directory-b99ea9087519
https://infosecwriteups.com/ntlm-authentication-in-active-directory-b99ea9087519
https://www.youtube.com/watch?v=xDFRUYv1-eU

